Compiler-directed Customization of ASIP Cores

T Vinod Kumar Gupta Roberto E. Ko Rajeev Barua
University of Maryland Cornell University University of Maryland
Coliege Park, MD Ithaca, NY College Park, MD
tvinod@eng.umd.edu ek56@cornell.edu barua@eng.umd.edu
ABSTRACT set, they are also called application specific instruction processors .

This paper presents an automaric method 1o cusiomize embedded
application-specific instruction processors (ASIPs) based on com-
piler analysis. ASIPs, also known as embedded soft cores, allow
certain hardware parameters in the processor 10 be customized
Jor a specific application domain. They offer low design cost as
they use pre-designed and verified components. Our design goal is
choosing parameler values for fastest runtime within a given sili-
con area budge! for a particular application set. Preseru-day tech-
nologies for choosing paramerer values rely on exhausrive simu-
lation of the application set on all possible combinations of pa-
rameter values — a time-consuming and non-scalable procedure.
We propose a compiler-based method that automaricaily derives
the optimal values of parameters without simulating any configu-
ration. Further, we expand the space of parameters that can be
changed from the limited set today, and evaluaie the importance of
eack. Results show that for our benchmarks, the runtimes for dif-
Jerent configurations are predicted with an average error of 2.5%.
In the rwo area consirained customizarion problem we evaluate,
our method is able to recommend the same configuration thar is
recommended by brute force exhaustive simulation."

Keywerds: customization, embedded, soft cores, ASIP

1. INTRODUCTION

A maijor challenge facing embedded system designers is the te-
dious and expensive design process of custom chips. Advances in
hardware-software co-design have yielded high-performance cus-
tom designs, yet the design of custoem chips remains expensive and
time-consuming. Consequently, many systems use general-purpose
embedded processors despite their much inferior performance and
power characteristics [7].

A recent :nnovation are embedded soft cores, which are interme-
diate between custom and general-purpose designs. Soft cores are
general-purpose processors that have parameterizable components
instead of a fixed design. Since customization is per application-

This research is funded in part by an NSF CAREER award 1o
Barua.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to [ists,
requires prior specific permission and/or a fee.

CODES'02, May 6-8, 2002, Estes Park, Colorado, USA,

Copyright 2002 ACM 1-58113-542-4/02/0005...85.00.

(ASIPs). Examples include those from Tensilica [t 4], ArcCores [1]
and HP [2, 3]. Application-specific configuration yields better per-
formance than general purpose chips, while pre-designed and ver-
ified components yield lower cost than custom chips. The trend
towards implementing embedded systems as a system-on-a-chip
(SOC) has increased the attraction of soft cores as the SOC fab-
rication is often done on a per-application basis anyway. Soft core
technology is in its infancy today - toois to help choose parame-
ter values rely on exhaustive search, and the space of customizable
parameters remains small.

Customization of soft cores on a per application-set basis may
yield benefits because not all applications use different CPU re-
sources equally. For example, multiply-accumulate (MAC) func-
tional units are profitable if the application set has many incidences
of computations such as (a2 x &)+ ¢ without the (a x b) value being
used elsewhere. For other applications which have few such com-
purations but (say) many paralle]l memory operations, it may be
profitable to provide dual-ported memory instead. As the silicon
area available may be limited due to cost and power constraints,
having all possible enhancements such as MAC and dual-ported
memory may not be possible. In such a scenario, choosing the
CPU design on an application-specific basis will yield lower run-
time and/or lower cost and power consumption.

Although ASIPs yield many advantages over hard cores, their
customization poses serious challenges. Existing methods usuaily
require the user to compile and run the target application on al
possible configuration of the ASIP, This exhaustive search is time-
consuming because the number of configurations is exponential in
the number of parameter values; further each configuration requires
simulation with potentially targe data sets. For parameters such as
memory size that can take on a large number of values, the number
of configurations grows very rapidly. A time-consuming search is
undesirable for three reasons. First, a long design time increases the
time-to-market and cost for a new design; a quick time-to-market 1s
critical for rapid innovation. Second, for many low-volume chips,
a high custom design cost forces the use of general-purpose chips.
Third, a design time that exponentially grows with the number of
parameters acts as a disincentive for increasing the number of cus-
tomizable parameters — this has probably already happened, as seen
in the small number of parameters in commercial designs [14, 1, 2].
A targer number of customizable parameters provides more opper-
tunities for the design to closely match the ideal requirements of
the application set, thus increasing performance within the same
silicon area.

In this paper, we present a method by which the optimal values
of architectural parameters for a given application set are awtomat-
ically derived: and further, more customizable parameters are pro-

97

Base architecture

Area estimates

+ and budget
Profiler Space of proposed
parameters
Profile |

data 4

Retargetable
performance
estimator

Application

Parameter vs.

runtime
functions

Architecture Optimal
exploration architectural
engine parameters

Figure 1: Methodology for Core Customization

posed. The optimality goal is maximum application performance
within a given area budget. Qur method predicts the best configu-
ration of the embedded core without actually ranning on any con-
figuration. The method analyzes the application using a compiler
framework that wses static and profile information to deduce the
best configuration using a proposed mathematical model.

Cur method works as follows. First, to be able to predict per-
formance of different configurations of the architecture at com-
pile time, we use a simplified processor description language to
describe the processor. The description language is expressed as
a context-free grammar that can describe most embedded VLIW
and single-issue processors, and the values of the parameters that
are to be customized. Second, the description is provided to the
instruction-scheduler in our compiler that derives a schedule, and
thus a performance estimate, for the application on the described
processor. Third. by predicting performance for configurations that
have only one CPU enhancement (parameter) present, we show a
method by which the performance of other configurations can be
inferred by using statistical data on the inter-dependence of the
given parameters.

The approach aims to improves upon the state-of-the-art in two
ways. First, the optimal configuration is proposed to be derived,
for the first time, without exhaustive simulation-based search of the
design space. The proposed mathematical model captures the inter-
dependence between the impact of different parameters on program
execution, using dependence constanrs. These constants preclude
the need 1o exhaustively simulate all combinations of parameter
values. Second, the parameters evaluated in this research are novel
in their nature, as they have never been evaluated in this context.
Overall, this rapid customization will allow low-volume chips to
be customized - many of these are forced to use general-purpose
chips today to hold down costs.

In this paper, we implement and evaluate our methodology 10
verify the correctness of its predictions. We use our methodology
to evaluate four parameters, namely, presence or absence of mac
functional unit, presence or absence of an hardware floaiing point
unit, need for a single-ported or dual-ported memory and the choice
between a non-pipelined and a pipelined memory unit. The archi-
tecture piatform used is the Philips TriMedia VLIW processor. Our
methodology predicts applications performance with an average er-
ror of under 2.5% between predicted and actual performance. Inthe
area constrained customization problem we evaluate, our method-
ology is able to recommend the exact same configuration that is
recommended by a brute force exhaustive simulation methodology.

2. RELATED WORK

Prior work in ASIP customization is restricted to approaches that

either evaluate configurations exhaustively or evaluale cenain pa-
rameters only in isofation. Further, cost-area-based analysis is ab-
sent in most related work.

Commercial soft cores include those by Tensilica [14] and ARC
Cores [1] corporations. They offer the user the ability to select the
instruction sex mix of the processor, its addressing modes and sizes
of internal memory banks. They supply a tool 1o the client that, for
each of these parameters, estimates the impact on area of varying
that parameter. Experienced designers at the client decide optimal
configuration based on their experience or by experimentally eval-
uating possible configurations using a simulator.

Gong et. al. [6] evaluate architectural features such as machine
parallelism. number of buses and their connectivity and memory
ports using their performance evaluator. The methodology com-
putes speedups by varicus parameters, but does not compute spee-
dups due to combination of parameters. Ghazal et. al. [5] predicts
runtimes of applications that ¢an take advantage of advanced pro-
cessor features and compiler optimizations such as optimized spe-
cial operations, memory addressing support, control-fiow support,
and loop-level optimization support. Gupta et. al. [8] analyze tar-
get applications to extract its characteristics. The characteristics,
in turn, give an indication of some of the architectural features of
suitable processor. But the methodology does not quantify the im-
pact of each derived feature. Moreover, the performance estimation
stage of the methodology requires exhaustive simulations.

Work by Kuulusa et. al. [10], Hebert et. al. [9] and Shackle-
ford et. al. [13] build software tools to do architecture parameter
space exploration by exhaustive search. They also evalvate exten-
sions to instruction sets. The work on Custom-Fit Processors [3,
2] also uses exhaustive search, but targets a a VLIW architecture
framework in which several characteristics can be changed: mem-
ory sizes, registers sizes. kinds and latencies of functional units and
clustered machines. speedup/Cost graphs are derived for all possi-
ble combinations yielding pareto points.

3. APPROACH

QOur approach customizes an existing base processor with en-
hanced architectural features (parameters) that are optimized for
a group of target applications. The design flow of the methodology
is shown in figure 1. Given an application code and base architec-
ture configuration, the performance analyze; estirnates the runtime
of the application with different architectural parameters. The re-
sults of this step. area estimates of each parameter, and overall area
budget are used by a architecture-exploration engine that chooses
optimal parameter values. The following sections explain the pro-
cess in detail.

98

Normalized 1
Runtime

—+
0 i

Parameter value
(Number of MAC units)

(a) Runtime_function

@

= data point

Silicon Area
(Transisior
eguivalents)

®

0 1

Parameter value
(Number of MAC unirs)

(b) Area_function

Figure 2: Example curves for MAC unit parameter. (a) shows how performance (Normalized runtime) may vary with the value of the parameter,
which is the number of MAC units, for some application. Runtimes are estimated by profite-augmented compiler analysis. (b) shows how the silicon
area varies with the parameter value. The areas of pre-fabricated blocks is known to the processor vendor.

_3.1 Problem formulation

Ler n be the number of customizable parameters. The method

solves for py, ..., p,. where p; represents the numerical value of
the #* parameter. For example, let the i* parameter be the presence
or absence of a multiply-accumulate (MAC) unit. A MAC unit
performs a multiply and a dependent add in the same time as an
ordinary multiply. The number of MACs, represented by p;, is
either 0or 1 (it can be more for VLIWSs). Without loss of generality,
assume the base architecture has p; = base; = 0. Our goal is to find
the values of p; that maximize performance within a certajn silicon
area. ‘Our approach has three steps. Steps 1 and 2 are performed
for each of the » parameters; step 3 combines the results.
Step 1: Derive runtime vs. parameter curves In this step, a
performance vs. parameter analyzer is derived for each parame-
ter, and used 1o plot the predicted performance of the application
set as a function of the parameter value p;. This is best explained
through an example. Figure 2(a) shows how the runtime vs. param-
eter curve may look like for some application set, for the parameter
tracking the presence or absence of a multiply-accumulate (MAC)
unit. The function thus obtained is called Runrime.function{p;},
and assumes that p; = O for all j # i. The Runtime_function is a
normalized funciion which is simply the ratio of the runtime with
parameter value of p; and base case runtime (when the parameter
value is the base value of that parameter). The runtime in each case
is obtained by prefiling — the profile-coliected basic block frequen-
cies are multiplied by cur VLIW-scheduler-predicted runtime of
that basic block?. When the MAC unit is present, however, a lower
runtime is predicted for basic blocks that use the MAC unit. The
lower prediction is obtained by re-compiling the application with
the compiler jooking for multiply-accumulate patterns in the data-
flow graph (DFG) of the application. and recomputing the runtime
with MAC instructions.

Qur approach is computationally more tractable than existing
methods as it re-compiles for every parameter value, rather than
re-running for every combination of parameter values. For one,
re-compiling the application is usuaily cheaper than re-running it,
especially for large data sets. More importantly, the number of
parameter values grows linearly with itself, while the number of

2Adding instruction latencies yields an accurate runiime for a ba-
sic block as virtually all embedded processors are single-issue ma-
chines or VLIWSs, not dynamic issue superscalars. Further, if there
is more than one application to be run on the desired processor,
their profile data is combined and weighted by their relative execu-
tion frequerncies.

99

combinations of parameter values grows exponentially.
Step 2: Obtain area vs. parameter curves Here we obtain
curves plotting the parameter values vs. the additicnal area re-
quired for that parameter value, beyond when the parameter is not
used. Figure 2(b) shows how the arca vs. parameier curve may
Iook like for the application set in consideration, for the MAC unit
parameter. The area for number of MACs = p; = 0 is, by def-
inition, zero. The area for number of MACs = | is the area of
a MAC unit in terms of gate equivalents. The area required for
pre-fabricated units used as parameters is, of course, known to
the vendor of embedded soft core. The function obtained in this
step is called Area_function{p;). The Runiime_function(p;} and
Area_funetion{p;) are maintained as 2 set of points; there is no
need to try to curve-fit them inte a symbolic form.
Step 3: Architecture-exploration engine chooses optimal pa-
rameter values To obtain the best performance, the different pa-
rameters are traded-off to obtain the best usage of silicon area for
that application. Finding optimal parameter values is a constrained
optimization problem. defined by a set of variables, a set of con-
straints and an objective function to be minimized. The variables
are the p; {: € [1,n]). The consmraint is that sum of the area functions
for all parameters is within the given fixed area budget:
»_Area_function(p;} < AREA BUDGET o)
The objective function 1o be minimized is the predicted overall
runtime of the applicaticn set as a function of the parameter values
P1. ---» Pn. Hypothetically, if we were 10 make the simplifying as-
sumption that the performance impact of each parameter were tnde-
pendent of the others, then the objective function would be simply
the product of the normalized rantime functions for each parameter
(] represents series product):

il
Pred_Runtime. function = H Runiime_function(p;}. {(2)

i=1 v

The difficulty is that the parameters are not all independent, mak-
ing the formula in (2) inaccurate. For example, increasing the value
of p; may either increase or decrease the gain from increasing an-
other parameter p;, as the pair may be synergistic or conflicting,
respectively. This work proposes and investigates a method by
which the interdependence between parameters can be accounted
for. The method incorporates a heuristic Dependence_constan: for

every combination of parameters, that adjusis for the gain for that
combination. In particular, the objective function in formula 2,
computing predicted overall normalized runtime, could be adjusted
as foliows:

[T}, Runsime. function(p;)

3
Dependence_constana(p,,...pn})

Pred Runtime_function =

The Dependence_consrant is a value that adjusts the gain to take
into account dependences between parameter values. For example,
if a particular combination of py.,...,p, is synergistic, the De pend-
enceconstans will be greater than 1 for that combination; and less
than 1 if copflicting. To collect values for this set of constants, the
intuition is that if the parameters are interdependent in a certain way
for a standard set of benchmarks, then perhaps they are interdepen-
dent in a similar way for the application set under consideration.
Different benchmark sets may be used from different domains, such
as signal-processing code, micro-controller code and communica-
tion protocol code, to more closely match the current application
sel. The Dependence_constant for a given combination of values
P1:---,Pn 15 2 cOnstant value obtained from exhaustively simulat-
ing the standard set of benchmarks, not the given application set.
The constant values are collected one-time only by the vendor, not
per design. They are computed as follows: for each combination
P1s- --»Pn, the actual normalized runtime is compared with the pre-
dicted runtime in formula 2. The constant factor is the ratio of the
two. Mathematically,

Dependence_constant(py,--- ,pn) =

I :ifVi, pi = base;
I :if3j,p;# basej,

Vid j,pi=base; (%)
: gtherwise

(1., Runtime function,{ pi
Actual normalized_runtime(p; - px

This heuristic to take into account interdependence is not exact.
Nevertheless, it has the potential 1o be close enough o accurate
to allow the exploration engine to choose a good combination of
parameter values.

3.2 Evalvated Parameter List
Listed below are four new parameters we have identified that we
believe have the potential to be profitably varied for better application-
specific perforrnance.
Presence vs. absence of MAC unit This tracks the presence
or absence of a multiply-accumulate (MAC) unit. A MAC unit
performs a muliiply and a dependent add in the same time as a
multiply. lts value depends upon how frequently the application
has MAC computations.
Hardware vs. Software floating point Floating point operations
can be done in hardware or simulated in software. Hardware's ad-
vantage is speed: bui software saves on the often-expensive area of
floating point units.
Multiported Memory Multiported memory allows multiple mem-
ory operations {loads and stores) simultaneously. For VLIWs, this
has the advamage of speeding up memory critical applications but
at a higher cost.
Pipelined vs. non-pipelined Memory Unit Pipelined memory
units allow memory operations to issue to a memory unit before it
has cormpleted the previous memary instructions issued to that unit.
Apart from the above four parameters that have been evaluated in
this paper, a whole range of new parameters can also be considered.
These may include register file size, number of architectural clus-

ters, number and nature of functional units, presence of an address
generatiorn unit.

4. ARCHITECTURE MODEL

Cur appreach estimates the runtime of applications on the base
architecture with parameterized components. To accurately esti-
mate Tuntime in a retargetable manner. the performance estima-
tor must model the architecture in some description language. We
choose an architecture representation that can express most embed-
ded VLIW processors. Based on the one nsed by Gupta et. al. {8), it
incorporates the different types of functional units thas are present
in the datapath, along with their associated operations, correspond-
ing latencies and delays. The model also captures the constraints of
typical VLIW cores in terms of operation stots and slot restrictions.
Finally, one can specify the namber of registers in the core, num-
ber of write buses, number of ports in the memory, and the delay of
branch operations.

The generic model provides the freedom to configure the archi-
tecture with varying levels of parallefism to offer. Also the nature,
kind and number of functiohal units can be altered to gauge their
effect on application behavior.

5. RETARGETABLE PERFORMANCE ES-
TIMATOR

To compute the untime-function estimates we need a compiler
based performance estimator. The estimator should be retargetable
to account for any input architecture specified by the architecture
description [anguage. Once configured for the architecture, the es-
timator should then return an estimate of the runtime for any given
application on that architecture. The estimator consists of three new
components:a profiler module, a data flow graph (DFG) builder and
a fine-grain scheduler; each is described below.

Profiler module The profiler module compuies the execution fre-
quencies of each basic block. To do this, it declares one new global
variable for each basic block that keeps count of the number of
times that block is executed. Each variable is initialized to zero in
the main function. At the start of each basic block, the variable
associated with it is incremented by one by a compiler-inserted in-
struction. The execution counts are available when the program
exits,

Data flow graph builder To schedule the application code, adata
flow graph is needed. The data flow graph builder takes a basic
block as input and outputs a directed acyclic graph (DAG) that cap-
tuzes all types of dependences between the aperations. The vertices
in the graph correspond 10 each operation in the basic block and an
edge between two vertices represent the dependence between them.
Fine-grain scheduler The scheduler takes as input the DFGs for
basic blocks, the target architecture description as specified in sec-
tion 4, ang the application’s profile data. It schedules each basic
block on the architecture to derive the execution time for each ba-
sic block. Next, it combines this with the execution frequency of
each block to estimate the overall runtime of the application on the
given architeciure.

The scheduler uses list scheduling [12] to schedule each basic
block. List scheduling is a greedy method that chooses the next
instruction to schedule among those ready to fire in the DAG in
the order of their priority. The priority for each instruction de-
pends on the length of the critical path from that instruction to the
end of the basic block — the longer the path. the higher the pri-
crity. Chosen instructions are scheduled in the first available slot
in the VLIW schedule. The priorities, and hence the schedule, is
machine-dependent as the length of the critical paths depends on

160

Sma
-ren
BDusl Pon

% ol Dass runima

apcm compeess soscral it

Figure 3: Performance effect of INDIVIDUAL parameters.
The figure shows the runtime functions for each benchmark
and application for each of the parameters chosen, namely,
mac, FPU, dual-ported memory and pipelined memory.

the latencies of the instructions on that architecture.

The scheduler also takes into account the special architectural
parameters being considered for configuring the soft core. The
four parameters evaluated in this paper are incorporated into the
scheduler as follows. First, the mac operations are detected in the
DFG, and scheduled as instructions in architecture configurations
that include a MAC unit in hardware. A mac instruction is used
only if the multiply operation has only one successor, otherwise
it is not profitable. Second, floating point operations in the DFG
are scheduled as instructions if hardware floating point is avail-
able: otherwise calls to equivalent software routines are inserted
for each floating point operation. Third. depending on the num-
ber of memory ports specified in the architecture description, usu-
ally specified by available VLIW slots for memory instructions, the
scheduler incorporates constraints on the nurnber of memory ports
correctly. Fourth, based on the presence of pipelined memory units,
the scheduier frees up the memory units cne cycle after it has issued
a memory operation.

6. CASE ANALYSIS AND RESULTS

Architecture core For our baseline DSP architecture, we model
a Philips TriMedia processor. This is a S-wide VLIW design with a
load/store architecture. All logic and arithmetic operations are per-
formed through the register file, The processor has 27 functional
units including those for floating point arithmetic. It also has a dual
ported memory. The memory functional unit has a 3 cycle delay.
Perfect branch prediction is assumed for the studies.- Experiments
are conducted 10 evaluate the effect of changing parameters on ap-
plication performance.

Benchmarks and Applications Programs from the UTDSP
benchmark suite [11] are randomly divided into two sets of four
*benchmarks’ and three *applications’. The benchmarks are used
to predict the performance of the applications. The benchmarks
include fir, iir, mulr and adpem. The applications are compress,
spectrel and ffr.

6.1 Computing Dependence Constants

The dependence constants between architectural parameters are
obtained by renning exhaustive simulations over all benchmarks,
The constants are compuited using equation 4 in section 3, which in-
volves exhaustive simulation of the benchmarks on all possible pa-
rameter combinations 10 compute the Acrual_normalized_runzime
for each combination. Thereafter, for ather applications, the aver-
age dependence constants are applied to predict its performance
for various configurations. Hence there is no need to carry out
exhaustive simulations for the other applications. If the predicted
performance is close to the actual measured performance, then the
methodology is verified.

Actual individual parameter effect Figure 3 shows the improve-

% of basa runtime

-

mult adpcm compress spectral fit
JOPM, PIPE M mac. FPU. DPM, PIPE

r
| CFPU.DPM

Figure 4: Performance effect of selected COMBINED param-

_ eters, The figure shows the runtime functions for each bench-

mark and application for selected combinations of the param-
eters chosen. DPM refers to dual-ported memory and PIPE
refers to pipelined memory

ment in performance of the benchmarks for each parameter individ-
ually. The bars for each benchmark show its cycle coumt as a per-
centage of the cycle count on a base architecture, i.e. runrime. fun-
crions. Itis seen that a given parameter can have varying impact on
different benchmarks.

125 1
12 -

145 ——* e —-
1 N S L
T
[e *k‘—--w'_:-.-:::. Flj:; g?;Tms
08 —
fir inr mutt adpem

Figure 5: Dependence constants for selected combined param-
eters.

Actual Combined Parameter Effect Figure 4 shows the im-

provement in performance for selected combinations of two or more
parameters in terms of rumime_funcrions. For four parameters,

there are eleven such combinations.

Deriving Dependence Constants Figure 5 shows the values of

each dependence constant for the different benchmarks. They are

derived from the values of acwial individual and combined parame-

ter runtime. funcrions, using equation 4. The average dependence

constant ranged from 0.955 for (mac. dual-ported memory, pipelined
memory) to 1.12 for (mac, FPU, dual-ported memory).

It is important to note that a dependence constant that is close
to one does not imply that the corresponding set of parameters are
independent. The reason is that the set of parameters the constant is
modelling impact only a fraction of the instructions in a program.
As an example, consider the two parameters dual-ported memory
and pipelined memory, both of which target memory parallelism.
Qur results did show that they are highly dependent - the gain from
both is almost the same (7.3%) on average as from each individ-
ually (6.1%). Thus the dependence constant from equation 4 is
(0.939 * 0.939)/(0.927) = 0.95. This is close to one despite the
parameters being highly dependent.

6.2 Predicting Performance

Performance of applications is predicted applying equation 2,
using the runtime_functions from figure 3 and the average depen-
dence constants in figure 5. For lack of space, although we have
computed predicted runtimes for all configurations for each bench-
mark, we present numbers for only one benchmark, £, in table 1.
For now, consider only the first two columns of numbers in the
table showing predicted and actual runtimes. Note that the predic-
tion error 1s small. Though for ffi, the error ranges from 0.13% to
11.68%. across all applications, the overall average error is small,

101

Configuration Est. Cycle Count | Actual Cycle Count | Area Estimate | Feasible?
MAC, FPU 3.51156E+10 3.34307E+10 26% Yes
MAC, Dual-ported Memory 1.2970BE+11 1.29912E+11 16% Yes
MAC, Pipelined Memory 1.27599E+11 1.27763E+11 13% Yes
FPU, Dual-ported Memory 3.25175E+10 3.22007E+10 30% Yes
FPU, Pipelined Memory 3.21419E+10 3.00624E+10 27% Yes
Dual-ported Memory, Piptlined Memory 1.26005E+11 126691E+11 17% Yes
MAC, FPU, Dual-ported Memory 3.06623E+10 2.79151E+10 36% No
MAC, FPU, Pipelined Memory 3.06787E+10 2.79151E+10 33% No
FPU, Dual-ported Memory, Pipelined Memory 3.13236E+10 2.89887E+10 37% No
MAC, Dual-ported Memory, Pipelined Memory 1.2475E+11 1.26691E+10 23% Yes
All four 3.01452E+10 2.68414E+10 43% No
Best Estimated Feasible Config.: FPU, Pipelined Memory 3.21419E+10 3.00624E+10 27% Yes
Best Actual Feasible Config.: FPU, Pipelined Memory 3.214]19E+10 3.00624E+10 23% Yes

Table 1: FFT benchmark: E

Dqul

ranging from 0.5% for combination (mac, dual-ported memory) to
5.16% for the combination (mac, FPU, pipelined memory).

6.3 Area Constrained Analysis

Our altimate goal is to predict the configuration that achieves the
best perforrnance within a given area budget. Here we devise an
experiment to predict the best configuration, and verify that it is
best through exhaustive simulation. The experiment is as follows.
The maximum allowable increase tn area is fixed at 32%. The area
increase from the use of MAC, hardware floating point. dual-ported
memory and pipelined memory is assumed to be 6% [4], 20% [4),
10% and 7% respectively over the base architecture. For the fft
application, table 1 shows the predicted and actual runtimes for the
eleven possibie combinations of parameters, along with their area
estimates and feasibility.

From table 1, we see that the best feasible configuration for fft
application is (FPU, pipelined memory) on the basis of predicted
runtime values. This is verified to be true with actual runtime val-
ues, showing the predictive power of the method. Next we repeated
the experiment in table | for the specrraf application (not shown).
We obtained the best predicted and actuaf feasible configuration
to be (FPU, Dual-ported memory). This shows the value of our
methodology as an application-specific methodology. It is able to
judge that the best configuration is different for different bench-
marks, based on compiler analysis.

7. CONCLUSIONS

This paper presents an automatic method to custormize embed-
ded application-specific instruction processors (ASIPs) based on
compiler analysis. Present-day technologies for choosing param-
eter values refy on exhaustive simufation of the application set on
all possible combinations of parameter values - a time-consurming
and tion-scalable procedure. We propose a compiler-based method
that automatically derives the optimal values of parameters with-
out simulating any coafiguration. Results show that for our bench-
marks, the runtimes for different configurations are predicted with
an average error of 2.5%. In the two area constrained customiza-
tion problem we evaluate, our method is able to recommend the
same configuration that is recommended by brute force exhaustive
sirnuiation.

8. REFERENCES

[1} Technical Summary of the ARC Core. ARC Cores Lid, 2000. At
hitp:/fwww.arccores.com:.

{2] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, and F. Homewood.
Lx: A Technology Platform for Customizable VLIW Embedded
Processing. In Proc. of the 27th Int’l Symp. on Computer Architecture
(?$CA}. Vancouver, British Columbia, Canada. June 2000.

[3]1 J. A, Fisher. P. Faraboschi, and G. Desoli. Custom-Fit Processors.
Technical report, Hewlett Packard Laboratory, 1501, Page Mill Road,
Palo Alto, CA 94304, 1997,

[4] M. Fiynn. EE382 Processor Design: Silicon Area and Cost Models.
Course handout, EE382, Stanford Univ., 1999,

[S] N. Ghazal, R. Newton, and J. Rabaey. Predicting Performance
Porential of Moderm DSPs. In Design Awtomation Conference, Jun
2000.

[6) 1. Gong, D. Gajsk. and A. Nicolau. A Performance Evaluator for
Parameterized ASIC Architectures. In Proc. European Conf on
Design Automation (EDAC), 1994,

[7]1 G. Goossens, J. Praet, D. Lanneer, W. Geurts, A Kilfi, C. Liern, and
P. P2ulin. Embedded Software in Real-Time Signal Processing
Systems: Design Technologies. fnvited paper, Proceedings of the
TEEE, 85(3), March 1997,

[8} T. V. K. Gupta, P. Sharma, M, Balakrishnan, and S. Malik. Processor
Evaluation in an Ernbedded Systemns Design Environment. [n
Proceedings of the 13:th International Conference on VLSI Design,
Jan 2000.

[9] . Heber, I. Kraljic, and Y, Savaria. A Method to Derive
Application-Specific Embedded Processing Cores. In 8 Inil Wisp
on Hardware/Sofrware Codesign. ACM, 2000.

{10} M. Kuulusa, J. Nurmi, J. Takala, P. Ojala, and H. Herranen. A
Flexible Core for Embeddad Systems. IEEE Design and Test of
Computers, 13(4), October 1997.

{11} C. Lee and M. Stoodley. UTDSP BenchMark Suite. 1992,
hup:/fwww.eecg.toronto.edw~corinna/DSP/infrastructure-
JUTDSPhiml.

[12] S. Muchnick. Advanced Compiler Design & Implementation.
Morgan Kaufrnann, San Fran., CA, 1997,

[13] B. Shackleford, M. Yasuda. E. Okushi, H. Koizumi. H. Tormiyama.
and H. Yasuura. Memory-CPU Size Optimization for Embedded
Systerns Designs. In Desrgn Automation Conference. ACM, 1997,

[14] 1. Turley. Tensilica CPU Bends 1o Designers’ Will. Microprocessor
Report, 13(3):12, March B 1999.

102

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

